USE OF TDA IN FOUNDATION ENGINEERING
TDA APPLICATIONS FOR RESIDENTIAL CONSTRUCTION

- SEPTIC
- UTILITIES BACKFILL
- RETAINING WALLS
- BASEMENT WALL
- FPSF
Basement Wall

10" REINFORCED CONCRETE WALL
9' HEIGHT

4" CONCRETE SLAB

SLAB SET @ 1' ABOVE FOOTER
6" MUD V.B.
4" GRAVEL BED

TIRE CHIP BACKFILL
(WRAPPED IN FABRIC)

FILTER MEMBRANE
GRAVEL

VIRGIN SOIL

4" DRAIN TO DAYLIGHT

BASEMENT WALL TYP.

SECTION 3
Properties & Characteristics

- Controlled Material
- Ease of Placement
- Sources ???
- Cost ???
Advantages

- Low lateral EP
- Drainage
- Thermal Insulation – necessity??
- Ease of placement – all weather conditions

Disadvantages

- High Compressibility
- Discharge – iron, zinc, manganese
- BUD Requirement
- Not directly addressed by building codes
Class I Fills:

-TDA placed in layers less than 1m (~3’) thick.

Have a maximum of 50% (by weight) passing the 38 mm (~1.5”) sieve.

Have a maximum of 5% (by weight) passing the 4.75 mm (~.19”) sieve.

Sample Applications of Class I Fills are typically utilized in landfill leachate and gas control applications.
ASTM D 6270-98 Fill Types

Class II Fills:

- TDA placed in layers ranging from 1m (~3’) to 3m (~10’) thick.

 Have a maximum of 25% (by weight) passing the 38 mm (1.5”) sieve.

 Have a maximum of 1% (by weight) passing the 4.75 mm (~.19”) sieve.

 Sample applications of Class II Fills are retaining wall back fills, embankment fills, and slope repairs.
RELEVANT STUDIES

Lab Tests – Material Properties
Prototype Retaining Wall
Demonstration Projects
Wall 119, TDA Placement
FROST PROTECTED SHALLOW FOUNDATION

*Increasing floor insulation will decrease heat flow to the foundation, and more perimeter (FPSF) insulation is required.
Relevant Studies

Laboratory Measurements
Demo – Pavement Frost Protection
Thermal Conductivity

- The thermal conductivity of tire shreds is lower than typical soils and varies depending on the size of the tire shreds.
- For insulation projects, tire shreds with a maximum size of 3 inches should be used.
- A 1’ thick blanket of TDA is expected to provide the same insulation value as a 1” thick EPS insulation board.
- Cost and ease of placement.
Witter Farm Road, Typical Cross Section
TEST BEDS
- UB TEST SITE
 - STRUCTURAL FILL
 - UTILITY BACKFILL
 - DRAINAGE
 - INSULATION
- FORT DRUM
 - INSULATION

FIELD/PROTOYPES
- MODEL CITY
 - SEPTIC
- FORT DRUM
 - FPSF
- SENECA MEADOWS
 - BASEMENT WALLS
 - RETAINING WALLS
 - UTILITY BACKFILL
UB TEST SITE AND ACCESS
Full-Size Basement
TEST BED BASEMENT “MOCK-UP”
EXCAVATION & SUBDRAIN DETAILS

- TDA Subdrain
- CBF Subdrain
- Sump Pit
- Floor Drain

Dimensions:
- 9' 8" - 1/2"
- 2' 0" min
- 1' 0" min

El. 579
El. 582
El. 585

Boundary between backfill types
ELEVATION VIEW & INSTRUMENTS

Precast Basement Mock-up

- Earth Pressure Cell
- Settlement Plate
- Thermistor
- Thermistor Pair
- Sister Bar

Elevation View & Instrument Layout
ANTICIPATED RESULTS

- Gain more confidence on use of TDA for Residential Construction
- Validate Model for Heat Flow
- Data in support of BUD Application
- Improved Basement Performance in areas with problem soils that may be used as BF
Summary

- TDA has potential applications in residential foundation construction.
- Desirable properties of TDA and applications as retaining wall backfill and for frost protection have already been demonstrated.
- Prototype construction and case studies are underway to facilitate transfer of this technology to residential construction applications.
QUESTIONS?

Center for Integrated Waste Management

The State University of New York

THANK YOU